您好,欢迎访问新疆畜牧科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
关键词:目标识别(模糊匹配)
1条记录
基于ResNet深度残差网络的白喉乌头检测

草业科学 2023 北大核心 CSCD

摘要:在人类活动和气候变化的影响下,毒害草的蔓延威胁着生态安全和畜牧业的健康发展,白喉乌头(Aconitum leucostomum)是新疆伊犁地区危害最为严重的毒害草之一。为了实现天然草原异质背景下快速、精准、自动检测毒害草的目标,以白喉乌头为研究对象,利用无人机航拍正射影像构建白喉乌头数据集。基于Faster-RCNN和SSD算法,采用ResNet50和ResNet101两种深度的主干网络提取特征,对比不同方法的检测精度。结果表明:通过对比测试集的检测精度Faster-RCNN_ResNet50的mAP (平均精确度)值最高,达到64.74%,而SSD_ResNet50的mAP最低,仅为48.70%,Faster-RCNN_ResNet101的mAP值为63.37%,而SSD_ResNet101的为52.55%。本研究对从航拍正射影像中检测白喉乌头有借鉴意义和参考价值。

关键词: 毒害草 深度学习 卷积神经网络 无人机遥感 目标识别 Faster-RCNN SSD

 全文链接 请求原文

首页上一页1下一页尾页